Slike će reći više od reči.
Malo tumačenja nekih sitnica iz kojih ćete saznati dosta toga, a možda ukapirati i model razmišljanja...
Prva fotka odeljak 1):
Univerzalni PNP ili NPN input ili AC input (stanje, zero srossing ili šta već).
-Za 24V standard 2k2 i zenerice 2 x 12V,
-za 12V standard 1k i zenerice 6v2.
PC814 (824 ili 844) ili LTV814 (824 ili 844) su optokapleri sa dve LED antiparalelno. CTR im je veći od 20% sa svega 1mA na LED.
Naravno, kao i ostalim optokaplerima sličnog tipa, maksimalna struja LED može biti do čak 50mA
Prvi od razloga za korišćenje LTV8x4 je mala struja potrebna za LED, drugi je aplikovanje bilo kog polariteta ili AC napona, o trećem razlogu ću kasnije.
Tr i Tf su isti kao kod PC817, oko 5uS, izolaciona sposobnost takođe.
Razlog stavlajnja serijskih zenerica je podizanje margine šuma na polovinu napona očekivanog signala.
Razlog paralelnog 4K7 sa LED je imunost na kapacitativna pražnjenja u dugačke vodove ulaza koji mogu biti dugački i desetine metara. Taj otpornik nebitno utiče na struju optokaplerove Led (Uf_led oko 1,3V).
Ako se očekuje enormna elektronska buka od nekih frekventnih regulatora, servomotora ili slično, paralelno sa 4k7 se stavi od 100n do 1uF SMD, pravo na noge optokaplera. 2k2 i taj kond formiraju niskopropusni filter. Vrednost se bira zavisno od frekvencije i intenziteta buke. Postiže se inzvaredna imunost, žrtva je izvesna latencija ulaza (bez toga je inače oko 5uS).
Prva fotka odeljak 2):
-NPN izlaz za 10A bez hlađenja sa IRFZ44N (zato što je superjevtin a moćan),
-isto sa darlingtonom BD649 za 2A bez hlađenja (jevtinija verzija za pneumatske ventile ili neke druge manje potrošače),
-na izlaz se mogu priključivati releji, kontaktori, snažni elektromagnetni ventili ili elektromagneti, takođe i niskonaonski DC elektromotori.
-klamp je izveden lokalno montiranom diodom odmah pored mosfeta ili BJT, doda je 1n400x kada se očekuje uklapane do nekoliko Hz, a ako se očekuje uklapanje nekoliko stotina Hz ili više onda 1N540x.
-Lokalni elko od 1000uF niskoinduktivno prikačen na grupe od po 8 izlaza.
-Kada se koristi mosfet onda mora stabilizator od 10-12Vmax. zbog sigurnosti gejtova mosfeta (+-20Vmax),
-za BJT ne treba stabilizator nego se jednostavno kolektori optokaplera spoje na 24V.
Inače, za 15-16 godina i oko 200 raznih PLC sa PIC od kojih nikada ni jedan nije stao, raznih veličina od 24-128 in-out, nisam upotrebio ukupno tri-četiri releja :-). Kontaktore preko SSR za velike motore, SSR za neke malo manje snage i ništa dalje od toga što se sklopne tehnike za 230-400VAC tiče.
Ne volim ih pa to ti je :-).
Škljocaju, kidaju im se žičice unutra i sasvim lako mogu da dovedu opasnih 220 na 24V, gore im i klimaju podnožja, varniče, a i onako moram da stavim RC član i sa SSR.
Zašto onda da se izlažem blamu da mi neka mašina stane zbog rasklimanog podnožja releja ili lošeg kontakta?
Osim toga, lokalni majstori čim vide releje počnu to da vade i vraćaju zbog neke mehaničke ili hidraulične greške na mašini, jer svi se odmah hvataju za struju kao izvor problema (posebno električari i hidrauličari). Ovako kada vide tranzistore, ne pipaju ništa pa me zovnu telefonom lepo a ja im dam smernice oko hidraulike ili mehanike, jer struja se ne kvari kada se dobro sastavi (osim groma direktno u najbližu banderu :-). Oni to lepo reše po uputstvu.
Vuci siti i koze na broju, a reputacija na mestu gde treba da bude :-)
Imam na primer jedan kontroler u Ugrinovcima, gde preko pola cikluse dotične mašine (oko 2 minuta na svaka 4 minuta), kroz moje mosfete (i to TO-252) gruva po preko 60A struje!!! Istočnonemačko -ruska mašina sa 39 ogromnih hidrauličnih ventila (nema ni jedan ispod 4A na 24VDC :-). Tom strujom se komotno zavaruje sa elektrodom od 2.5mm. Sve to lepo ide kroz mosfete i pcb i naravno originalne Phoenix konektore jer se ne bih usudio da stavim druge za tolike struje (1 euro po šrafnom mestu).
----------------------------
Druga fotka odeljak 3):
-Supresovanje gličeva i prenaponskih pojava koje mogu nastati na dugačkim vodovima potrošača, a zbog njihove sprege sa drugim vodovima ili zbog induktiviteta potrošača, kao i zbog induktiviteta samih vodova.
Postoje dve ptanje supresije:
-kroz klamp diodu, lokalno jer tu i treba zato što se tu klampuju i vodovi dotle, a koji mogu biti dugački i po neku destinu metara ili više.
-kroz milerov integrator zbog Cdg mosfeta a zbog namerno vrlo velikog otpora gejta. Svakoj strmoj pojavi će drastično biti ublažen nagib i njena energija delom potrošena kao toplota na mosfetu, delom odvedena kroz klamp diodu u elko od 1000uF. Toplota na mosfetu je malena, i moguće je svičovanje sa do 1KHz i strujama od 10A kod čistih induktivnih potrošača a bez hlađenja mosfeta. Takođe je tom metodom umanjen efekat forward recovery klamp diode i ESR-ESL od 1000uF. Istim potezom su izbegnuti ogromni elkos koji bi bili nužni za set od na primer 8 elektromagnetnih ventila kojima treba nešto reda 5A i svi stalno nešto "škljocaju"... Dakle na svakih 8 po svega 1000uF.
Ista metoda supresovanja gličeva je i sa BJT gde se takođe koristi milerov kapacitet i takođe je 2k2 taman dovoljan za bazu, a da se ne mora menjati vrednost. Pull down je sasvim jasno čemu služi u oba slučaja.
Kod BJT odvodi Icb0, kod mosfeta povećava Rg na 6k9 u isključenom stanju i forsira Milerov integrator.
Cena tog načina je maksimalna brzina svičovanja od oko 1KHz. Uostalom ta sa sporim optokaplerom nije ni pametno brže raditi. Kada mi treba brzi PWM onda koristim optodriver TLP250 sa 130nS Tr i Tf.
PWM ostane potpuno konzistentan izvornom na PIC (jednaki Tr i Tf, ujedno i +-1.5A drive za vrlo snažan mosfet ili IGBT). Kada se koristi TLP250 onda na 5V PIC treba 330R za njegovu LED.
(inače ni malo privatno ne volim 3v3 pic zbog manjih margina šuma i lošije kompatibilnosti sa mnogim korisnim periferijama)
Druga fotka odeljak 4):
-na ulaznim pinovima PIC ostaje isti otpornik koji dimenzioniše struju za LED optokaplera kada je izlaz. dakle na svim in-out pinovima 680R, odnosno nema promene za in ili out.
-kada je na ulazu taj otpornik sa internim parazitnim kapacitetom ulaza formira niskopropusni filter za HF pojave.
-putanje gličeva su kroz relativno niskoimpendansni 4k7 ka Vdd i kroz parazitni C ulaza.
Naravno, dobar decoupling PIC je nužna stvar. Minimalno 100n multilejer na samim pinovima napajanja i bar 100uF malo dalje.
Reset linija se izvodi sa relativno niskim impendansama. Kada je baš kratko izvedena onda je dovoljno oko 4K7, a ako je dugačka i produžena do serijskog porta za bootload, onda 1K i 100n preko njega ka Vdd.
--------------------------------------------------------
Tipična AGND za 28-40 pina PIC MCU je na strani A porta, ujedno su i AN ulazi niskošumniji na toj strani PIC. Za finija merenja treba preferirati anaogne ulaze na toj strani PIC.
------------------------------------------------------
------------------------------------------------------
Treći i poslednji razlog korišćenja LTV814 (jednostruki) LTV824 (dvostruki) ili LTV844 (četvorostruki) može se videti iz pažljivog posmatranja pcb za moj mini PLC (24 dig in-out, RS232, LCD, tastatura od 5+1 taster, opciono 2 PWM, SPI, I2C, za ekspanziju do 56 in-out ili šta drugo). Sve ista pcb bez izmena.
Sasvim normalno SMPS napajanje push pull tipa sa 13-36VDC na 5VDC, sa parazitnim kapacitetom od 20-50pF sa 24V ka Pic.
mini.pdf (Size: 103,67 KB / Downloads: 76)
Samo preokretanjem optokaplera (rotacijom za 180 stepeni) mogu birati za bilo koji in-out od ovih 24, da li će biti in ili out. I to u grupama po jedan (LTV814), po 2 (LTV824) ili po 4 (LTV844).
Ako mi trebaju ulazi, napunim sa zenericama i otpornicima za to ako mi trebaju izlazi onda na ista mesta napunim mosfete ili bjt i klamp diode.
Eto toliko od mene.
Pozz
Malo tumačenja nekih sitnica iz kojih ćete saznati dosta toga, a možda ukapirati i model razmišljanja...
Prva fotka odeljak 1):
Univerzalni PNP ili NPN input ili AC input (stanje, zero srossing ili šta već).
-Za 24V standard 2k2 i zenerice 2 x 12V,
-za 12V standard 1k i zenerice 6v2.
PC814 (824 ili 844) ili LTV814 (824 ili 844) su optokapleri sa dve LED antiparalelno. CTR im je veći od 20% sa svega 1mA na LED.
Naravno, kao i ostalim optokaplerima sličnog tipa, maksimalna struja LED može biti do čak 50mA
Prvi od razloga za korišćenje LTV8x4 je mala struja potrebna za LED, drugi je aplikovanje bilo kog polariteta ili AC napona, o trećem razlogu ću kasnije.
Tr i Tf su isti kao kod PC817, oko 5uS, izolaciona sposobnost takođe.
Razlog stavlajnja serijskih zenerica je podizanje margine šuma na polovinu napona očekivanog signala.
Razlog paralelnog 4K7 sa LED je imunost na kapacitativna pražnjenja u dugačke vodove ulaza koji mogu biti dugački i desetine metara. Taj otpornik nebitno utiče na struju optokaplerove Led (Uf_led oko 1,3V).
Ako se očekuje enormna elektronska buka od nekih frekventnih regulatora, servomotora ili slično, paralelno sa 4k7 se stavi od 100n do 1uF SMD, pravo na noge optokaplera. 2k2 i taj kond formiraju niskopropusni filter. Vrednost se bira zavisno od frekvencije i intenziteta buke. Postiže se inzvaredna imunost, žrtva je izvesna latencija ulaza (bez toga je inače oko 5uS).
Prva fotka odeljak 2):
-NPN izlaz za 10A bez hlađenja sa IRFZ44N (zato što je superjevtin a moćan),
-isto sa darlingtonom BD649 za 2A bez hlađenja (jevtinija verzija za pneumatske ventile ili neke druge manje potrošače),
-na izlaz se mogu priključivati releji, kontaktori, snažni elektromagnetni ventili ili elektromagneti, takođe i niskonaonski DC elektromotori.
-klamp je izveden lokalno montiranom diodom odmah pored mosfeta ili BJT, doda je 1n400x kada se očekuje uklapane do nekoliko Hz, a ako se očekuje uklapanje nekoliko stotina Hz ili više onda 1N540x.
-Lokalni elko od 1000uF niskoinduktivno prikačen na grupe od po 8 izlaza.
-Kada se koristi mosfet onda mora stabilizator od 10-12Vmax. zbog sigurnosti gejtova mosfeta (+-20Vmax),
-za BJT ne treba stabilizator nego se jednostavno kolektori optokaplera spoje na 24V.
Inače, za 15-16 godina i oko 200 raznih PLC sa PIC od kojih nikada ni jedan nije stao, raznih veličina od 24-128 in-out, nisam upotrebio ukupno tri-četiri releja :-). Kontaktore preko SSR za velike motore, SSR za neke malo manje snage i ništa dalje od toga što se sklopne tehnike za 230-400VAC tiče.
Ne volim ih pa to ti je :-).
Škljocaju, kidaju im se žičice unutra i sasvim lako mogu da dovedu opasnih 220 na 24V, gore im i klimaju podnožja, varniče, a i onako moram da stavim RC član i sa SSR.
Zašto onda da se izlažem blamu da mi neka mašina stane zbog rasklimanog podnožja releja ili lošeg kontakta?
Osim toga, lokalni majstori čim vide releje počnu to da vade i vraćaju zbog neke mehaničke ili hidraulične greške na mašini, jer svi se odmah hvataju za struju kao izvor problema (posebno električari i hidrauličari). Ovako kada vide tranzistore, ne pipaju ništa pa me zovnu telefonom lepo a ja im dam smernice oko hidraulike ili mehanike, jer struja se ne kvari kada se dobro sastavi (osim groma direktno u najbližu banderu :-). Oni to lepo reše po uputstvu.
Vuci siti i koze na broju, a reputacija na mestu gde treba da bude :-)
Imam na primer jedan kontroler u Ugrinovcima, gde preko pola cikluse dotične mašine (oko 2 minuta na svaka 4 minuta), kroz moje mosfete (i to TO-252) gruva po preko 60A struje!!! Istočnonemačko -ruska mašina sa 39 ogromnih hidrauličnih ventila (nema ni jedan ispod 4A na 24VDC :-). Tom strujom se komotno zavaruje sa elektrodom od 2.5mm. Sve to lepo ide kroz mosfete i pcb i naravno originalne Phoenix konektore jer se ne bih usudio da stavim druge za tolike struje (1 euro po šrafnom mestu).
----------------------------
Druga fotka odeljak 3):
-Supresovanje gličeva i prenaponskih pojava koje mogu nastati na dugačkim vodovima potrošača, a zbog njihove sprege sa drugim vodovima ili zbog induktiviteta potrošača, kao i zbog induktiviteta samih vodova.
Postoje dve ptanje supresije:
-kroz klamp diodu, lokalno jer tu i treba zato što se tu klampuju i vodovi dotle, a koji mogu biti dugački i po neku destinu metara ili više.
-kroz milerov integrator zbog Cdg mosfeta a zbog namerno vrlo velikog otpora gejta. Svakoj strmoj pojavi će drastično biti ublažen nagib i njena energija delom potrošena kao toplota na mosfetu, delom odvedena kroz klamp diodu u elko od 1000uF. Toplota na mosfetu je malena, i moguće je svičovanje sa do 1KHz i strujama od 10A kod čistih induktivnih potrošača a bez hlađenja mosfeta. Takođe je tom metodom umanjen efekat forward recovery klamp diode i ESR-ESL od 1000uF. Istim potezom su izbegnuti ogromni elkos koji bi bili nužni za set od na primer 8 elektromagnetnih ventila kojima treba nešto reda 5A i svi stalno nešto "škljocaju"... Dakle na svakih 8 po svega 1000uF.
Ista metoda supresovanja gličeva je i sa BJT gde se takođe koristi milerov kapacitet i takođe je 2k2 taman dovoljan za bazu, a da se ne mora menjati vrednost. Pull down je sasvim jasno čemu služi u oba slučaja.
Kod BJT odvodi Icb0, kod mosfeta povećava Rg na 6k9 u isključenom stanju i forsira Milerov integrator.
Cena tog načina je maksimalna brzina svičovanja od oko 1KHz. Uostalom ta sa sporim optokaplerom nije ni pametno brže raditi. Kada mi treba brzi PWM onda koristim optodriver TLP250 sa 130nS Tr i Tf.
PWM ostane potpuno konzistentan izvornom na PIC (jednaki Tr i Tf, ujedno i +-1.5A drive za vrlo snažan mosfet ili IGBT). Kada se koristi TLP250 onda na 5V PIC treba 330R za njegovu LED.
(inače ni malo privatno ne volim 3v3 pic zbog manjih margina šuma i lošije kompatibilnosti sa mnogim korisnim periferijama)
Druga fotka odeljak 4):
-na ulaznim pinovima PIC ostaje isti otpornik koji dimenzioniše struju za LED optokaplera kada je izlaz. dakle na svim in-out pinovima 680R, odnosno nema promene za in ili out.
-kada je na ulazu taj otpornik sa internim parazitnim kapacitetom ulaza formira niskopropusni filter za HF pojave.
-putanje gličeva su kroz relativno niskoimpendansni 4k7 ka Vdd i kroz parazitni C ulaza.
Naravno, dobar decoupling PIC je nužna stvar. Minimalno 100n multilejer na samim pinovima napajanja i bar 100uF malo dalje.
Reset linija se izvodi sa relativno niskim impendansama. Kada je baš kratko izvedena onda je dovoljno oko 4K7, a ako je dugačka i produžena do serijskog porta za bootload, onda 1K i 100n preko njega ka Vdd.
--------------------------------------------------------
Tipična AGND za 28-40 pina PIC MCU je na strani A porta, ujedno su i AN ulazi niskošumniji na toj strani PIC. Za finija merenja treba preferirati anaogne ulaze na toj strani PIC.
------------------------------------------------------
------------------------------------------------------
Treći i poslednji razlog korišćenja LTV814 (jednostruki) LTV824 (dvostruki) ili LTV844 (četvorostruki) može se videti iz pažljivog posmatranja pcb za moj mini PLC (24 dig in-out, RS232, LCD, tastatura od 5+1 taster, opciono 2 PWM, SPI, I2C, za ekspanziju do 56 in-out ili šta drugo). Sve ista pcb bez izmena.
Sasvim normalno SMPS napajanje push pull tipa sa 13-36VDC na 5VDC, sa parazitnim kapacitetom od 20-50pF sa 24V ka Pic.
mini.pdf (Size: 103,67 KB / Downloads: 76)
Samo preokretanjem optokaplera (rotacijom za 180 stepeni) mogu birati za bilo koji in-out od ovih 24, da li će biti in ili out. I to u grupama po jedan (LTV814), po 2 (LTV824) ili po 4 (LTV844).
Ako mi trebaju ulazi, napunim sa zenericama i otpornicima za to ako mi trebaju izlazi onda na ista mesta napunim mosfete ili bjt i klamp diode.
Eto toliko od mene.
Pozz