10-21-2016, 04:45 PM
Drugari imam problem , ne znam kako da nastelujem PID za servo motor.
Motor radi okrece koliko mu stepa zadam ali kad stane ima ima luft oko 5 stepeni
Koliko sam razumeo treba da se nasteluju:
eeput(kp,0);
eeput(ki,4);
eeput(kd,8);
Smanjivao sam vrednosti do 1 i cini mi se da ima manje luft .
Ali opet ima , i na 10 ponavljanja imam odstupanja...
Motor radi okrece koliko mu stepa zadam ali kad stane ima ima luft oko 5 stepeni
Koliko sam razumeo treba da se nasteluju:
eeput(kp,0);
eeput(ki,4);
eeput(kd,8);
Smanjivao sam vrednosti do 1 i cini mi se da ima manje luft .
Ali opet ima , i na 10 ponavljanja imam odstupanja...
Code:
/* This one is not using any PinChangeInterrupt library */
/*
This program uses an Arduino for a closed-loop control of a DC-motor.
Motor motion is detected by a quadrature encoder.
Two inputs named STEP and DIR allow changing the target position.
Serial port prints current position and target position every second.
Serial input can be used to feed a new location for the servo (no CR LF).
Pins used:
Digital inputs 2 & 8 are connected to the two encoder signals (AB).
Digital input 3 is the STEP input.
Analog input 0 is the DIR input.
Digital outputs 9 & 10 control the PWM outputs for the motor (I am using half L298 here).
Please note PID gains kp, ki, kd need to be tuned to each different setup.
*/
#include <EEPROM.h>
#include <PID_v1.h>
#define encoder0PinA 2 // PD2;
#define encoder0PinB 8 // PC0;
#define M1 9
#define M2 10 // motor's PWM outputs
byte pos[1000]; int p=0;
double kp=3,ki=0,kd=0.0;
double input=0, output=0, setpoint=0;
PID myPID(&input, &output, &setpoint,kp,ki,kd, DIRECT);
volatile long encoder0Pos = 0;
boolean auto1=false, auto2=false,counting=false;
long previousMillis = 0; // will store last time LED was updated
long target1=0; // destination location at any moment
//for motor control ramps 1.4
bool newStep = false;
bool oldStep = false;
bool dir = false;
byte skip=0;
// Install Pin change interrupt for a pin, can be called multiple times
void pciSetup(byte pin)
{
*digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
}
void setup() {
pinMode(encoder0PinA, INPUT);
pinMode(encoder0PinB, INPUT);
pciSetup(encoder0PinB);
attachInterrupt(0, encoderInt, CHANGE); // encoder pin on interrupt 0 - pin 2
attachInterrupt(1, countStep , RISING); // step input on interrupt 1 - pin 3
TCCR1B = TCCR1B & 0b11111000 | 1; // set 31Kh PWM
Serial.begin (115200);
help();
recoverPIDfromEEPROM();
//Setup the pid
myPID.SetMode(AUTOMATIC);
myPID.SetSampleTime(1);
myPID.SetOutputLimits(-255,255);
}
void loop(){
input = encoder0Pos;
setpoint=target1;
while(!myPID.Compute()); // wait till PID is actually computed
if(Serial.available()) process_line(); // it may induce a glitch to move motion, so use it sparingly
pwmOut(output);
if(auto1) if(millis() % 3000 == 0) target1=random(2000); // that was for self test with no input from main controller
if(auto2) if(millis() % 1000 == 0) printPos();
//if(counting && abs(input-target1)<15) counting=false;
if(counting && (skip++ % 5)==0 ) {pos[p]=encoder0Pos; if(p<999) p++; else counting=false;}
}
void pwmOut(int out) {
if(out<0) { analogWrite(M1,0); analogWrite(M2,abs(out)); }
else { analogWrite(M2,0); analogWrite(M1,abs(out)); }
}
const int QEM [16] = {0,-1,1,2,1,0,2,-1,-1,2,0,1,2,1,-1,0}; // Quadrature Encoder Matrix
static unsigned char New, Old;
ISR (PCINT0_vect) { // handle pin change interrupt for D8
Old = New;
New = (PINB & 1 )+ ((PIND & 4) >> 1); //
encoder0Pos+= QEM [Old * 4 + New];
}
void encoderInt() { // handle pin change interrupt for D2
Old = New;
New = (PINB & 1 )+ ((PIND & 4) >> 1); //
encoder0Pos+= QEM [Old * 4 + New];
}
void countStep(){ if (PINC&B0000001) target1--;else target1++; } // pin A0 represents direction
void process_line() {
char cmd = Serial.read();
if(cmd>'Z') cmd-=32;
switch(cmd) {
case 'P': kp=Serial.parseFloat(); myPID.SetTunings(kp,ki,kd); break;
case 'D': kd=Serial.parseFloat(); myPID.SetTunings(kp,ki,kd); break;
case 'I': ki=Serial.parseFloat(); myPID.SetTunings(kp,ki,kd); break;
case '?': printPos(); break;
case 'X': target1=Serial.parseInt(); p=0; counting=true; for(int i=0; i<300; i++) pos[i]=0; break;
case 'T': auto1 = !auto1; break;
case 'A': auto2 = !auto2; break;
case 'Q': Serial.print("P="); Serial.print(kp); Serial.print(" I="); Serial.print(ki); Serial.print(" D="); Serial.println(kd); break;
case 'H': help(); break;
case 'W': writetoEEPROM(); break;
case 'K': eedump(); break;
case 'R': recoverPIDfromEEPROM() ; break;
case 'S': for(int i=0; i<p; i++) Serial.println(pos[i]); break;
}
while(Serial.read()!=10); // dump extra characters till LF is seen (you can use CRLF or just LF)
}
void printPos() {
Serial.print(F("Position=")); Serial.print(encoder0Pos); Serial.print(F(" PID_output=")); Serial.print(output); Serial.print(F(" Target=")); Serial.println(setpoint);
}
void help() {
Serial.println(F("\nPID DC motor controller and stepper interface emulator"));
Serial.println(F("by misan"));
Serial.println(F("Available serial commands: (lines end with CRLF or LF)"));
Serial.println(F("P123.34 sets proportional term to 123.34"));
Serial.println(F("I123.34 sets integral term to 123.34"));
Serial.println(F("D123.34 sets derivative term to 123.34"));
Serial.println(F("? prints out current encoder, output and setpoint values"));
Serial.println(F("X123 sets the target destination for the motor to 123 encoder pulses"));
Serial.println(F("T will start a sequence of random destinations (between 0 and 2000) every 3 seconds. T again will disable that"));
Serial.println(F("Q will print out the current values of P, I and D parameters"));
Serial.println(F("W will store current values of P, I and D parameters into EEPROM"));
Serial.println(F("H will print this help message again"));
Serial.println(F("A will toggle on/off showing regulator status every second\n"));
}
void writetoEEPROM() { // keep PID set values in EEPROM so they are kept when arduino goes off
eeput(kp,0);
eeput(ki,4);
eeput(kd,8);
double cks=0;
for(int i=0; i<12; i++) cks+=EEPROM.read(i);
eeput(cks,12);
Serial.println("\nPID values stored to EEPROM");
//Serial.println(cks);
}
void recoverPIDfromEEPROM() {
double cks=0;
double cksEE;
for(int i=0; i<12; i++) cks+=EEPROM.read(i);
cksEE=eeget(12);
//Serial.println(cks);
if(cks==cksEE) {
Serial.println(F("*** Found PID values on EEPROM"));
kp=eeget(0);
ki=eeget(4);
kd=eeget(8);
myPID.SetTunings(kp,ki,kd);
}
else Serial.println(F("*** Bad checksum"));
}
void eeput(double value, int dir) { // Snow Leopard keeps me grounded to 1.0.6 Arduino, so I have to do this :-(
char * addr = (char * ) &value;
for(int i=dir; i<dir+4; i++) EEPROM.write(i,addr[i-dir]);
}
double eeget(int dir) { // Snow Leopard keeps me grounded to 1.0.6 Arduino, so I have to do this :-(
double value;
char * addr = (char * ) &value;
for(int i=dir; i<dir+4; i++) addr[i-dir]=EEPROM.read(i);
return value;
}
void eedump() {
for(int i=0; i<16; i++) { Serial.print(EEPROM.read(i),HEX); Serial.print(" "); }Serial.println();
}